指数函数求导,指数函数的导数如何求解
温馨提示:这篇文章已超过412天没有更新,请注意相关的内容是否还可用!
1、指数函数的求导公式:(a^x)=(lna)(a^x)
2、部分导数公式:
(1)y=c(c为常数)y=0
(2)y=x^ny=nx^(n-1)
(3)y=a^x;y=a^xlna;y=e^xy=e^x
(4)y=logaxy=logae/x;y=lnxy=1/x
(5)y=sinxy=cosx
(6)y=cosxy=-sinx
(7)y=tanxy=1/cos^2x
(8)y=cotxy=-1/sin^2x
(9)y=arcsinxy=1/√1-x^2
(10)y=arccosxy=-1/√1-x^2
(11)y=arctanxy=1/1+x^2
(12)y=arccotxy=-1/1+x^2
3、求导证明:
y=a^x
两边同时取对数,得:lny=xlna
两边同时对x求导数,得:y/y=lna
所以y=ylna=a^xlna,得证。
4、注意事项
不是所有的函数都可以求导;
可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
导数的求导法则如下:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
设:指数函数为:y=a^xy'=lim【△x→0】[a^(x+△x)-a^x]/△xy'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△xy'=lim【△x→0】(a^x){[(a^(△x)]-1}/△xy'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)设:[(a^(△x)]...
指数函数求导公式:(a^x)'=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
指数函数的导数公式是什么
y=a^x
两边同时取对数:
lny=xlna
两边同时对x求导数:
==>y'/y=lna
==>y'=ylna=a^xlna
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
指数函数的求导求法如下
指数函数导数公式:(a^x)'=(a^x)(lna)。
y=a^x
两边同时取对数:lny=xlna
两边同时对x求导数:==>y'/y=lna==>y'=ylna=a^xlna
导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
指数函数的求导公式:(a^x)'=(lna)(a^x)
部分导数公式:
1.y=c(c为常数)y'=0
2.y=x^ny'=nx^(n-1)
3.y=a^x;y'=a^xlna;y=e^xy'=e^x
4.y=logaxy'=logae/x;y=lnxy'=1/x
5.y=sinxy'=cosx
求导证明:
y=a^x
两边同时取对数,得:lny=xlna
两边同时对x求导数,得:y'/y=lna
所以y'=ylna=a^xlna,得证
注意事项
1.不是所有的函数都可以求导;
2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
指数函数导数是指数函数。根据基本初等函数的求导法则,对于指数函数f(x)=a^x的求导法则是:f'(x)=a^x。
另外指数型的函数的导数是它本身:f(x)=a^(x+b)的导数是指数函数。
事实上,根据复合函数求导法则,于是有g'(x)=〈a^(x+b)〉'*(x+b)'=a^(x+b)。
发布于:2024-05-04,网站文章图片来源于网络,以不营利的目的分享经验知识,如有侵权请联系删除。
还没有评论,来说两句吧...