格兰杰因果检验 格兰杰因果关系检验stata命令
温馨提示:这篇文章已超过559天没有更新,请注意相关的内容是否还可用!
有一组数据进行平稳性检验和格兰杰因果关系检验
转载的:单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。一、讨论一1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别二、讨论二1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。三、讨论三其实很多人存在误解。有如下几点,需要澄清:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。来自:excel表中怎么样设定因果公式
=IF(条件,符合条件结果,不符合条件结果)
如,如果A1大于5,显示“对”,否则显示“错”,公式:=IF(A1>5,"对","错")
原理:
如果一个事件a的发生与不发生对于另一个事件b的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又先后顺序(a前b后),那么我们便可以说a是b的原因。
f统计值probability
adosenotgrangercausebxy
bdosenotgrangercauseazw
granger因果关系检验又可以称为granger非因果关系检验。
在上表中,x与y是对应的,z与w是相互对应的。y与w是eviews软件根据x与z值计算出来的概率值,这样可以省去了查表的麻烦。即根据x或是y值来判断a是不是b的granger因都是可以的。
那么,在5%的显著性水平下,我们只要看看y和w的值与5%的关系就可以了。如果y5%,即f检验通过了,就接受“adoesnotgrangercauseb”,也就是说,a不是b的格兰杰因。同样的方法可以分析w与5%的关系。
如果y和w都小于5%,那么a与b就互为因果关系。
实现的具体方法:
在excel中通过选择菜单:工具--加载宏--分析工具库,就加载了数据分析的功能。
通过选择菜单:工具--数据分析--回归,对两列数据分别做为x和y做两次回归,就可得到f值,及相应的p值。
格兰杰检验的目的
目的:
用于分析经济变量之间的格兰杰因果关系。格兰杰因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差”。
当然,即使格兰杰因果关系不等于实际因果关系,也并不妨碍其参考价值。
因为在经济学中,统计意义上的格兰杰因果关系也是有意义的,对于经济预测等仍然能起一些作用。
由于假设检验的零假设是不存在因果关系,在该假设下F统计量服从F分布,因此严格地说,该检验应该称为格兰杰非因果关系检验。
stata如何避免反向因果
基本方法是格兰杰因果检验
序列平稳性检验检验形式是什么意思
单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。一、讨论一1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别二、讨论二1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。三、讨论三其实很多人存在误解。有如下几点,需要澄清:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。发布于:2023-11-27,网站文章图片来源于网络,以不营利的目的分享经验知识,如有侵权请联系删除。
还没有评论,来说两句吧...